Source code for sympy.printing.ccode

"""
C code printer

The C89CodePrinter & C99CodePrinter converts single sympy expressions into
single C expressions, using the functions defined in math.h where possible.

A complete code generator, which uses ccode extensively, can be found in
sympy.utilities.codegen. The codegen module can be used to generate complete
source code files that are compilable without further modifications.


"""

from __future__ import print_function, division

from sympy.core import S
from sympy.core.compatibility import string_types, range
from sympy.core.decorators import deprecated
from sympy.codegen.ast import Assignment
from sympy.printing.codeprinter import CodePrinter
from sympy.printing.precedence import precedence, PRECEDENCE
from sympy.sets.fancysets import Range

# dictionary mapping sympy function to (argument_conditions, C_function).
# Used in C89CodePrinter._print_Function(self)
known_functions_C89 = {
    "Abs": [(lambda x: not x.is_integer, "fabs")],
    "sin": "sin",
    "cos": "cos",
    "tan": "tan",
    "asin": "asin",
    "acos": "acos",
    "atan": "atan",
    "atan2": "atan2",
    "exp": "exp",
    "log": "log",
    "sinh": "sinh",
    "cosh": "cosh",
    "tanh": "tanh",
    "floor": "floor",
    "ceiling": "ceil",
}

# move to C99 once CCodePrinter is removed:
_known_functions_C9X = dict(known_functions_C89, **{
    "asinh": "asinh",
    "acosh": "acosh",
    "atanh": "atanh",
    "erf": "erf",
    "gamma": "tgamma",
})
known_functions = _known_functions_C9X

known_functions_C99 = dict(_known_functions_C9X, **{
    "erfc": "erfc",
})

# These are the core reserved words in the C language. Taken from:
# http://en.cppreference.com/w/c/keyword

reserved_words = [
    'auto', 'break', 'case', 'char', 'const', 'continue', 'default', 'do',
    'double', 'else', 'enum', 'extern', 'float', 'for', 'goto', 'if', 'int',
    'long', 'register', 'return', 'short', 'signed', 'sizeof', 'static',
    'struct', 'entry',  # never standardized, we'll leave it here anyway
    'switch', 'typedef', 'union', 'unsigned', 'void', 'volatile', 'while'
]

reserved_words_c99 = ['inline', 'restrict']

def get_math_macros():
    """ Returns a dictionary with math-related macros from math.h/cmath

    Note that these macros are not strictly required by the C/C++-standard.
    For MSVC they are enabled by defining "_USE_MATH_DEFINES" (preferably
    via a compilation flag).

    Returns
    -------
    Dictionary mapping sympy expressions to strings (macro names)

    """
    from sympy.codegen.cfunctions import log2, Sqrt
    from sympy.functions.elementary.exponential import log
    from sympy.functions.elementary.miscellaneous import sqrt

    return {
        S.Exp1: 'M_E',
        log2(S.Exp1): 'M_LOG2E',
        1/log(2): 'M_LOG2E',
        log(2): 'M_LN2',
        log(10): 'M_LN10',
        S.Pi: 'M_PI',
        S.Pi/2: 'M_PI_2',
        S.Pi/4: 'M_PI_4',
        1/S.Pi: 'M_1_PI',
        2/S.Pi: 'M_2_PI',
        2/sqrt(S.Pi): 'M_2_SQRTPI',
        2/Sqrt(S.Pi): 'M_2_SQRTPI',
        sqrt(2): 'M_SQRT2',
        Sqrt(2): 'M_SQRT2',
        1/sqrt(2): 'M_SQRT1_2',
        1/Sqrt(2): 'M_SQRT1_2'
    }


class C89CodePrinter(CodePrinter):
    """A printer to convert python expressions to strings of c code"""
    printmethod = "_ccode"
    language = "C"
    standard = "C89"
    reserved_words = set(reserved_words)

    _default_settings = {
        'order': None,
        'full_prec': 'auto',
        'precision': 15,
        'user_functions': {},
        'human': True,
        'contract': True,
        'dereference': set(),
        'error_on_reserved': False,
        'reserved_word_suffix': '_',
    }

    _ns = ''  # namespace, C++ uses 'std::'
    _kf = known_functions_C89  # known_functions-dict to copy

    def __init__(self, settings={}):
        super(C89CodePrinter, self).__init__(settings)
        self.known_functions = dict(self._kf, **settings.get('user_functions', {}))

    def _rate_index_position(self, p):
        return p*5

    def _get_statement(self, codestring):
        return "%s;" % codestring

    def _get_comment(self, text):
        return "// {0}".format(text)

    def _declare_number_const(self, name, value):
        return "double const {0} = {1};".format(name, value)

    def _format_code(self, lines):
        return self.indent_code(lines)

    def _traverse_matrix_indices(self, mat):
        rows, cols = mat.shape
        return ((i, j) for i in range(rows) for j in range(cols))

    def _print_Pow(self, expr):
        if "Pow" in self.known_functions:
            return self._print_Function(expr)
        PREC = precedence(expr)
        if expr.exp == -1:
            return '1.0/%s' % (self.parenthesize(expr.base, PREC))
        elif expr.exp == 0.5:
            return '%ssqrt(%s)' % (self._ns, self._print(expr.base))
        elif expr.exp == S.One/3 and self.standard != 'C89':
            return '%scbrt(%s)' % (self._ns, self._print(expr.base))
        else:
            return '%spow(%s, %s)' % (self._ns, self._print(expr.base),
                                   self._print(expr.exp))

    def _print_Rational(self, expr):
        p, q = int(expr.p), int(expr.q)
        return '%d.0L/%d.0L' % (p, q)

    def _print_Indexed(self, expr):
        # calculate index for 1d array
        offset = getattr(expr.base, 'offset', S.Zero)
        strides = getattr(expr.base, 'strides', None)
        indices = expr.indices

        if strides is None or isinstance(strides, str):
            dims = expr.shape
            shift = S.One
            temp = tuple()
            if strides == 'C' or strides is None:
                traversal = reversed(range(expr.rank))
                indices = indices[::-1]
            elif strides == 'F':
                traversal = range(expr.rank)

            for i in traversal:
                temp += (shift,)
                shift *= dims[i]
            strides = temp
        flat_index = sum([x[0]*x[1] for x in zip(indices, strides)]) + offset
        return "%s[%s]" % (self._print(expr.base.label), self._print(flat_index))

    def _print_Idx(self, expr):
        return self._print(expr.label)

    def _print_Exp1(self, expr):
        return "M_E"

    def _print_Pi(self, expr):
        return 'M_PI'

    def _print_Infinity(self, expr):
        return 'HUGE_VAL'

    def _print_NegativeInfinity(self, expr):
        return '-HUGE_VAL'

    def _print_Piecewise(self, expr):
        if expr.args[-1].cond != True:
            # We need the last conditional to be a True, otherwise the resulting
            # function may not return a result.
            raise ValueError("All Piecewise expressions must contain an "
                             "(expr, True) statement to be used as a default "
                             "condition. Without one, the generated "
                             "expression may not evaluate to anything under "
                             "some condition.")
        lines = []
        if expr.has(Assignment):
            for i, (e, c) in enumerate(expr.args):
                if i == 0:
                    lines.append("if (%s) {" % self._print(c))
                elif i == len(expr.args) - 1 and c == True:
                    lines.append("else {")
                else:
                    lines.append("else if (%s) {" % self._print(c))
                code0 = self._print(e)
                lines.append(code0)
                lines.append("}")
            return "\n".join(lines)
        else:
            # The piecewise was used in an expression, need to do inline
            # operators. This has the downside that inline operators will
            # not work for statements that span multiple lines (Matrix or
            # Indexed expressions).
            ecpairs = ["((%s) ? (\n%s\n)\n" % (self._print(c), self._print(e))
                    for e, c in expr.args[:-1]]
            last_line = ": (\n%s\n)" % self._print(expr.args[-1].expr)
            return ": ".join(ecpairs) + last_line + " ".join([")"*len(ecpairs)])

    def _print_ITE(self, expr):
        from sympy.functions import Piecewise
        _piecewise = Piecewise((expr.args[1], expr.args[0]), (expr.args[2], True))
        return self._print(_piecewise)

    def _print_MatrixElement(self, expr):
        return "{0}[{1}]".format(self.parenthesize(expr.parent, PRECEDENCE["Atom"],
            strict=True), expr.j + expr.i*expr.parent.shape[1])

    def _print_Symbol(self, expr):
        name = super(C89CodePrinter, self)._print_Symbol(expr)
        if expr in self._settings['dereference']:
            return '(*{0})'.format(name)
        else:
            return name

    def _print_Relational(self, expr):
        lhs_code = self._print(expr.lhs)
        rhs_code = self._print(expr.rhs)
        op = expr.rel_op
        return ("{0} {1} {2}").format(lhs_code, op, rhs_code)

    def _print_sinc(self, expr):
        from sympy.functions.elementary.trigonometric import sin
        from sympy.core.relational import Ne
        from sympy.functions import Piecewise
        _piecewise = Piecewise(
            (sin(expr.args[0]) / expr.args[0], Ne(expr.args[0], 0)), (1, True))
        return self._print(_piecewise)

    def _print_AugmentedAssignment(self, expr):
        lhs_code = self._print(expr.lhs)
        op = expr.rel_op
        rhs_code = self._print(expr.rhs)
        return "{0} {1} {2};".format(lhs_code, op, rhs_code)

    def _print_For(self, expr):
        target = self._print(expr.target)
        if isinstance(expr.iterable, Range):
            start, stop, step = expr.iterable.args
        else:
            raise NotImplementedError("Only iterable currently supported is Range")
        body = self._print(expr.body)
        return ('for ({target} = {start}; {target} < {stop}; {target} += '
                '{step}) {{\n{body}\n}}').format(target=target, start=start,
                stop=stop, step=step, body=body)

    def _print_sign(self, func):
        return '((({0}) > 0) - (({0}) < 0))'.format(self._print(func.args[0]))

    def _print_Max(self, expr):
        if "Max" in self.known_functions:
            return self._print_Function(expr)
        from sympy import Max
        if len(expr.args) == 1:
            return self._print(expr.args[0])
        return "((%(a)s > %(b)s) ? %(a)s : %(b)s)" % {
            'a': expr.args[0], 'b': self._print(Max(*expr.args[1:]))}

    def _print_Min(self, expr):
        if "Min" in self.known_functions:
            return self._print_Function(expr)
        from sympy import Min
        if len(expr.args) == 1:
            return self._print(expr.args[0])
        return "((%(a)s < %(b)s) ? %(a)s : %(b)s)" % {
            'a': expr.args[0], 'b': self._print(Min(*expr.args[1:]))}

    def indent_code(self, code):
        """Accepts a string of code or a list of code lines"""

        if isinstance(code, string_types):
            code_lines = self.indent_code(code.splitlines(True))
            return ''.join(code_lines)

        tab = "   "
        inc_token = ('{', '(', '{\n', '(\n')
        dec_token = ('}', ')')

        code = [line.lstrip(' \t') for line in code]

        increase = [int(any(map(line.endswith, inc_token))) for line in code]
        decrease = [int(any(map(line.startswith, dec_token))) for line in code]

        pretty = []
        level = 0
        for n, line in enumerate(code):
            if line == '' or line == '\n':
                pretty.append(line)
                continue
            level -= decrease[n]
            pretty.append("%s%s" % (tab*level, line))
            level += increase[n]
        return pretty


class _C9XCodePrinter(object):
    # Move these methods to C99CodePrinter when removing CCodePrinter
    def _get_loop_opening_ending(self, indices):
        open_lines = []
        close_lines = []
        loopstart = "for (int %(var)s=%(start)s; %(var)s<%(end)s; %(var)s++){"  # C99
        for i in indices:
            # C arrays start at 0 and end at dimension-1
            open_lines.append(loopstart % {
                'var': self._print(i.label),
                'start': self._print(i.lower),
                'end': self._print(i.upper + 1)})
            close_lines.append("}")
        return open_lines, close_lines


[docs]@deprecated( last_supported_version='1.0', useinstead="C89CodePrinter or C99CodePrinter, e.g. ccode(..., standard='C99')", issue=12220, deprecated_since_version='1.1') class CCodePrinter(_C9XCodePrinter, C89CodePrinter): """ Deprecated. Alias for C89CodePrinter, for backwards compatibility. """ _kf = _known_functions_C9X # known_functions-dict to copy
class C99CodePrinter(_C9XCodePrinter, C89CodePrinter): standard = 'C99' reserved_words = set(reserved_words + reserved_words_c99) _kf = known_functions_C99 # known_functions-dict to copy def _print_Max(self, expr): if "Max" in self.known_functions: return self._print_Function(expr) from sympy import Max if len(expr.args) == 1: return self._print(expr.args[0]) return "%sfmax(%s, %s)" % (self._ns, expr.args[0], self._print(Max(*expr.args[1:]))) def _print_Min(self, expr): if "Min" in self.known_functions: return self._print_Function(expr) from sympy import Min if len(expr.args) == 1: return self._print(expr.args[0]) return "%sfmin(%s, %s)" % (self._ns, expr.args[0], self._print(Min(*expr.args[1:]))) def _print_Infinity(self, expr): return 'INFINITY' def _print_NegativeInfinity(self, expr): return '-INFINITY' def _print_NaN(self, expr): return 'NAN' def _print_fma(self, expr): # fused mutiply-add return '{0}fma({1}, {2}, {3})'.format(self._ns, *map(self._print, expr.args)) def _print_log10(self, expr): # log10 in C89, but type-generic macro in C99 return '{0}log10({1})'.format(self._ns, self._print(expr.args[0])) def _print_Sqrt(self, expr): return '{0}sqrt({1})'.format(self._ns, self._print(expr.args[0])) def _print_Cbrt(self, expr): return '{0}cbrt({1})'.format(self._ns, self._print(expr.args[0])) def _print_hypot(self, expr): return '{0}hypot({1}, {2})'.format(self._ns, *map(self._print, expr.args)) def _print_expm1(self, expr): return '{0}expm1({1})'.format(self._ns, self._print(expr.args[0])) def _print_log1p(self, expr): return '{0}log1p({1})'.format(self._ns, self._print(expr.args[0])) def _print_exp2(self, expr): return '{0}exp2({1})'.format(self._ns, self._print(expr.args[0])) def _print_log2(self, expr): return '{0}log2({1})'.format(self._ns, self._print(expr.args[0])) def _print_loggamma(self, expr): return '{0}lgamma({1})'.format(self._ns, self._print(expr.args[0])) # tgamma was already covered by 'known_functions' dict c_code_printers = { 'c89': C89CodePrinter, 'c99': C99CodePrinter, } def ccode(expr, assign_to=None, standard='c99', **settings): """Converts an expr to a string of c code Parameters ========== expr : Expr A sympy expression to be converted. assign_to : optional When given, the argument is used as the name of the variable to which the expression is assigned. Can be a string, ``Symbol``, ``MatrixSymbol``, or ``Indexed`` type. This is helpful in case of line-wrapping, or for expressions that generate multi-line statements. standard : str, optional String specifying the standard. If your compiler supports a more modern standard you may set this to 'c99' to allow the printer to use more math functions. [default='c89']. precision : integer, optional The precision for numbers such as pi [default=15]. user_functions : dict, optional A dictionary where the keys are string representations of either ``FunctionClass`` or ``UndefinedFunction`` instances and the values are their desired C string representations. Alternatively, the dictionary value can be a list of tuples i.e. [(argument_test, cfunction_string)] or [(argument_test, cfunction_formater)]. See below for examples. dereference : iterable, optional An iterable of symbols that should be dereferenced in the printed code expression. These would be values passed by address to the function. For example, if ``dereference=[a]``, the resulting code would print ``(*a)`` instead of ``a``. human : bool, optional If True, the result is a single string that may contain some constant declarations for the number symbols. If False, the same information is returned in a tuple of (symbols_to_declare, not_supported_functions, code_text). [default=True]. contract: bool, optional If True, ``Indexed`` instances are assumed to obey tensor contraction rules and the corresponding nested loops over indices are generated. Setting contract=False will not generate loops, instead the user is responsible to provide values for the indices in the code. [default=True]. Examples ======== >>> from sympy import ccode, symbols, Rational, sin, ceiling, Abs, Function >>> x, tau = symbols("x, tau") >>> ccode((2*tau)**Rational(7, 2), standard='C89') '8*sqrt(2)*pow(tau, 7.0L/2.0L)' >>> ccode(sin(x), assign_to="s", standard='C89') 's = sin(x);' Simple custom printing can be defined for certain types by passing a dictionary of {"type" : "function"} to the ``user_functions`` kwarg. Alternatively, the dictionary value can be a list of tuples i.e. [(argument_test, cfunction_string)]. >>> custom_functions = { ... "ceiling": "CEIL", ... "Abs": [(lambda x: not x.is_integer, "fabs"), ... (lambda x: x.is_integer, "ABS")], ... "func": "f" ... } >>> func = Function('func') >>> ccode(func(Abs(x) + ceiling(x)), standard='C89', user_functions=custom_functions) 'f(fabs(x) + CEIL(x))' or if the C-function takes a subset of the original arguments: >>> ccode(2**x + 3**x, standard='C99', user_functions={'Pow': [ ... (lambda b, e: b == 2, lambda b, e: 'exp2(%s)' % e), ... (lambda b, e: b != 2, 'pow')]}) 'exp2(x) + pow(3, x)' ``Piecewise`` expressions are converted into conditionals. If an ``assign_to`` variable is provided an if statement is created, otherwise the ternary operator is used. Note that if the ``Piecewise`` lacks a default term, represented by ``(expr, True)`` then an error will be thrown. This is to prevent generating an expression that may not evaluate to anything. >>> from sympy import Piecewise >>> expr = Piecewise((x + 1, x > 0), (x, True)) >>> print(ccode(expr, tau, standard='C89')) if (x > 0) { tau = x + 1; } else { tau = x; } Support for loops is provided through ``Indexed`` types. With ``contract=True`` these expressions will be turned into loops, whereas ``contract=False`` will just print the assignment expression that should be looped over: >>> from sympy import Eq, IndexedBase, Idx >>> len_y = 5 >>> y = IndexedBase('y', shape=(len_y,)) >>> t = IndexedBase('t', shape=(len_y,)) >>> Dy = IndexedBase('Dy', shape=(len_y-1,)) >>> i = Idx('i', len_y-1) >>> e=Eq(Dy[i], (y[i+1]-y[i])/(t[i+1]-t[i])) >>> ccode(e.rhs, assign_to=e.lhs, contract=False, standard='C89') 'Dy[i] = (y[i + 1] - y[i])/(t[i + 1] - t[i]);' Matrices are also supported, but a ``MatrixSymbol`` of the same dimensions must be provided to ``assign_to``. Note that any expression that can be generated normally can also exist inside a Matrix: >>> from sympy import Matrix, MatrixSymbol >>> mat = Matrix([x**2, Piecewise((x + 1, x > 0), (x, True)), sin(x)]) >>> A = MatrixSymbol('A', 3, 1) >>> print(ccode(mat, A, standard='C89')) A[0] = pow(x, 2); if (x > 0) { A[1] = x + 1; } else { A[1] = x; } A[2] = sin(x); """ return c_code_printers[standard.lower()](settings).doprint(expr, assign_to) def print_ccode(expr, **settings): """Prints C representation of the given expression.""" print(ccode(expr, **settings))