
gristmill Documentation
Release 0.2.0

Jinmo Zhao and Gustavo E Scuseria

Sep 29, 2017

CONTENTS:

1 Introduction 1

2 Release history 3
2.1 0.2.0 . 3

3 API Reference 5
3.1 Evaluation Optimization . 5
3.2 Code generation . 6

4 Indices and tables 11

Index 13

i

ii

CHAPTER

ONE

INTRODUCTION

The gristmill package is a pure Python package based on drudge for automatic code generation and optimization,
with emphasis on tensor contraction operations.

1

https://github.com/tschijnmo/drudge

gristmill Documentation, Release 0.2.0

2 Chapter 1. Introduction

CHAPTER

TWO

RELEASE HISTORY

2.1 0.2.0

This is mostly a bug fix release. Problems in the handling of bounds in Fortran printer and in the treatment purely
scalar intermediates without any external indices are fixed. And the handling of summations are improved with less
intermediates by removing duplicated and shallowly-defined ones. Most importantly, the automatic result checker has
been fixed.

3

gristmill Documentation, Release 0.2.0

4 Chapter 2. Release history

CHAPTER

THREE

API REFERENCE

The gristmill package can be divided into two orthogonal parts,

The evaluation optimization part, which transforms tensor definitions into a mathematically equivalent definition
sequence with less floating-point operations required.

The code generation part, which takes tensor definitions, either optimized or not, into computer code snippets.

3.1 Evaluation Optimization

gristmill.optimize(computs: typing.Iterable[drudge.drudge.TensorDef], substs=None, in-
term_fmt=’tau^{}’, simplify=True)→ typing.List[drudge.drudge.TensorDef]

Optimize the valuation of the given tensor contractions.

This function will transform the given computations, given as tensor definitions, into another list computations
mathematically equivalent to the given computation while requiring less floating-point operations (FLOPs).

Parameters

• computs – The computations, can be given as an iterable of tensor definitions.

• substs – A dictionary for making substitutions inside the sizes of ranges. All the ranges
need to have size in at most one undetermined variable after the substitution so that they can
be totally ordered.

• interm_fmt – The format for the names of the intermediates.

• simplify – If the input is going to be simplified before processing. It can be disabled
when the input is already simplified.

gristmill.verify_eval_seq(eval_seq: typing.Sequence[drudge.drudge.TensorDef], res: typ-
ing.Sequence[drudge.drudge.TensorDef], simplify=False)→ bool

Verify the correctness of an evaluation sequence for the results.

The last entries of the evaluation sequence should be in one-to-one correspondence with the original form in
the res argument. This function returns True when the evaluation sequence is symbolically equivalent to the
given raw form. When a difference is found, ValueError will be raised with relevant information.

Note that this function can be very slow for large evaluations. But it is advised to be used for all optimizations
in mission-critical tasks.

Parameters

• eval_seq – The evaluation sequence to verify, can be the output from optimize()
directly.

• res – The original result to test the evaluation sequence against. It can be the input to
optimize() directly.

5

gristmill Documentation, Release 0.2.0

• simplify – If simplification is going to be performed after each step of the back-
substitution. It is advised for larger complex evaluations.

gristmill.get_flop_cost(eval_seq: typing.Iterable[drudge.drudge.TensorDef], leading=False, ig-
nore_consts=True)

Get the FLOP cost for the given evaluation sequence.

This function gives the count of floating-point operations, addition and multiplication, involved by the evaluation
sequence. Note that the cost of copying and initialization are not counted. And this function is only applicable
where the amplitude of the terms are simple products.

Parameters

• eval_seq – The evaluation sequence whose FLOP cost is to be estimated. It should be
given as an iterable of tensor definitions.

• leading – If only the cost terms with leading scaling be given. When multiple symbols
are present in the range sizes, terms with the highest total scaling is going to be picked.

• ignore_consts – If the cost of scaling with constants can be ignored. 2𝑥𝑖𝑦𝑗 could count
as just one FLOP when it is set, otherwise it would be two.

3.2 Code generation

class gristmill.BasePrinter(scal_printer: sympy.printing.printer.Printer, in-
dexed_proc_cb=<function BasePrinter.<lambda>>,
add_globals=None, add_filters=None, add_tests=None,
add_templ=None)

The base class for tensor printers.

__init__(scal_printer: sympy.printing.printer.Printer, indexed_proc_cb=<function
BasePrinter.<lambda>>, add_globals=None, add_filters=None, add_tests=None,
add_templ=None)

Initializes a base printer.

Parameters

• scal_printer – The SymPy printer for scalar quantities.

• indexed_proc_cb – It is going to be called with context nodes with base and
indices (in both the root and for each indexed factors, as described in transl())
to do additional processing.

transl(tensor_def: drudge.drudge.TensorDef)→ types.SimpleNamespace
Translate tensor definition into context for template rendering.

This function will translate the given tensor definition into a simple namespace that could be easily used
as the context in the actual Jinja template rendering.

The context contains fields,

base A printed form for the base of the tensor definition.

indices A list of external indices. For each entry, keys index and range are present to give the
printed form of the index and the range it is over. For convenience, lower, upper, and size
have the printed form of lower/upper bounds and the size of the range. We also have lower_expr,
upper_expr, and size_expr for the unprinted expression of them.

terms A list of terms for the tensor, with each entry being a simple namespace with keys,

6 Chapter 3. API Reference

gristmill Documentation, Release 0.2.0

sums A list of summations in the tensor term. Its entries are in the same format as the external indices
for tarrays.

phase + sign or - sign. For the phase of the term.

numerator The printed form of the numerator of the coefficient of the term. It can be a simple 1
string.

denominator The printed form of the denominator.

indexed_factors The indexed factors of the term. Each is given as a simple namespace with key
base for the printed form of the base, and a key indices giving the indices to the key, in the
same format as the indices field of the base context.

other_factors Factors which are not simple indexed quantity, given as a list of the printed form
directly.

The actual content of the context can also be customized by overriding the proc_ctx() in subclasses.

proc_ctx(tensor_def: drudge.drudge.TensorDef, term: typing.Union[drudge.term.Term, NoneType],
tensor_entry: types.SimpleNamespace, term_entry: typing.Union[types.SimpleNamespace,
NoneType])

Make additional processing of the rendering context.

This method can be override to make additional processing on the rendering context described in
transl() to perform additional customization or to make more information available.

It will be called for each of the terms during the processing. And finally it will be called again with the
term given as None for a final processing.

By default, the indexed quantities nodes are processed by the user-given call-back.

render(templ_name: str, ctx: types.SimpleNamespace)→ str
Render the given context for the given template.

Meaningful subclass methods can call this function for actual functionality.

__weakref__
list of weak references to the object (if defined)

class gristmill.ImperativeCodePrinter(scal_printer: sympy.printing.printer.Printer,
print_indexed_cb, global_indent=1, in-
dent_size=4, max_width=80, line_cont=”,
breakable_regex=’(\s*[+-]\s*)’, stmt_end=”,
add_globals=None, add_filters=None,
add_tests=None, add_templ=None, **kwargs)

Printer for automatic generation of naive imperative code.

This printer supports the printing of the evaluation of tensor expressions by simple loops and arithmetic opera-
tions.

This is mostly a base class that is going to be subclassed for different languages. For each language, mostly just
the options for the language could be given in the super initializer. Most important ones are the printer for the
scalar expressions and the formatter of loops, as well as some definition of literals and operators.

__init__(scal_printer: sympy.printing.printer.Printer, print_indexed_cb, global_indent=1, in-
dent_size=4, max_width=80, line_cont=”, breakable_regex=’(\\s*[+-]\\s*)’, stmt_end=”,
add_globals=None, add_filters=None, add_tests=None, add_templ=None, **kwargs)

Initialize the automatic code printer.

scal_printer A sympy printer used for the printing of scalar expressions.

3.2. Code generation 7

gristmill Documentation, Release 0.2.0

print_indexed_cb It will be called with the printed base, and the list of indices (as described in
BasePrinter.transl()) to return the string for the printed form. This will be called after the
given processing of indexed nodes.

global_indent The base global indentation of the generated code.

indent_size The size of the indentation.

max_width The maximum width for each line.

line_cont The string used for indicating line continuation.

breakable_regex The regular expression used to break long expressions.

stmt_end The ending of the statements.

index_paren The pair of parenthesis for indexing arrays.

All options to the base class BasePrinter are also supported.

proc_ctx(tensor_def: drudge.drudge.TensorDef, term: typing.Union[drudge.term.Term, NoneType],
tensor_entry: types.SimpleNamespace, term_entry: typing.Union[types.SimpleNamespace,
NoneType])

Process the context.

The indexed nodes will be printed by user-given printer and given to indexed attributes of the same node.
Also the term contexts will be given an attribute named amp for the whole amplitude part put together.

print_eval(ctx: types.SimpleNamespace)
Print the evaluation of a tensor definition.

gristmill.CCodePrinter
alias of wrapper

class gristmill.FortranPrinter(openmp=True, **kwargs)
Fortran code printer.

In this class, just some parameters for the new Fortran programming language is fixed relative to the base
ImperativeCodePrinter.

__init__(openmp=True, **kwargs)
Initialize a Fortran code printer.

The printer class, the name of the template, and the line continuation symbol will be set automatically.

print_decl_eval(tensor_defs: typing.Iterable[drudge.drudge.TensorDef], decl_type=’real’, ex-
plicit_bounds=False)→ typing.Tuple[typing.List[str], typing.List[str]]

Print Fortran declarations and evaluations of tensor definitions.

Parameters

• tensor_defs – The tensor definitions to print.

• decl_type – The type to be declared for the tarrays.

• explicit_bounds – If the lower and upper bounds should be written explicitly in the
declaration.

Returns

• decls – The list of declaration strings.

• evals – The list of evaluation strings.

print_decl(ctx, decl_type, explicit_bounds)
Print the Fortran declaration of the LHS of a tensor definition.

8 Chapter 3. API Reference

gristmill Documentation, Release 0.2.0

A string will be returned that forms the naive declaration of the given tarrays as local variables.

class gristmill.EinsumPrinter(**kwargs)
Printer for the einsum function.

For tensors that are classical tensor contractions, this printer generates code based on the NumPy einsum
function. For contractions supported, the code from this printer can also be used for Tensorflow.

__init__(**kwargs)
Initialize the printer.

All keyword arguments are forwarded to the base class BasePrinter.

print_eval(tensor_defs: typing.Iterable[drudge.drudge.TensorDef], base_indent=4)→ str
Print the evaluation of the tensor definitions.

Parameters

• tensor_defs – The tensor definitions for the evaluations.

• base_indent – The base indent of the generated code.

Returns

Return type The code for evaluations.

3.2. Code generation 9

gristmill Documentation, Release 0.2.0

10 Chapter 3. API Reference

CHAPTER

FOUR

INDICES AND TABLES

• genindex

• modindex

• search

11

gristmill Documentation, Release 0.2.0

12 Chapter 4. Indices and tables

INDEX

Symbols
__init__() (gristmill.BasePrinter method), 6
__init__() (gristmill.EinsumPrinter method), 9
__init__() (gristmill.FortranPrinter method), 8
__init__() (gristmill.ImperativeCodePrinter method), 7
__weakref__ (gristmill.BasePrinter attribute), 7

B
BasePrinter (class in gristmill), 6

C
CCodePrinter (in module gristmill), 8

E
EinsumPrinter (class in gristmill), 9

F
FortranPrinter (class in gristmill), 8

G
get_flop_cost() (in module gristmill), 6

I
ImperativeCodePrinter (class in gristmill), 7

O
optimize() (in module gristmill), 5

P
print_decl() (gristmill.FortranPrinter method), 8
print_decl_eval() (gristmill.FortranPrinter method), 8
print_eval() (gristmill.EinsumPrinter method), 9
print_eval() (gristmill.ImperativeCodePrinter method), 8
proc_ctx() (gristmill.BasePrinter method), 7
proc_ctx() (gristmill.ImperativeCodePrinter method), 8

R
render() (gristmill.BasePrinter method), 7

T
transl() (gristmill.BasePrinter method), 6

V
verify_eval_seq() (in module gristmill), 5

13

	Introduction
	Release history
	0.2.0

	API Reference
	Evaluation Optimization
	Code generation

	Indices and tables
	Index

